Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros

Tipo de documento
Intervalo de ano
1.
biorxiv; 2024.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2024.02.13.580120

RESUMO

RNA processing mechanisms, such as alternative splicing and RNA editing, have been recognized as critical means to expand the transcriptome. Chimeric RNAs formed by intergenic splicing provide another potential layer of RNA diversification. By analyzing a large set of RNA-Seq data and validating results in over 1,200 blood samples, we identified UBA1-CDK16, a female-specific chimeric transcript. Intriguingly, both parental genes, are expressed in males and females. Mechanistically, UBA1-CDK16 is produced by cis-splicing between the two adjacent X-linked genes, originating from the inactive X chromosome. A female-specific chromatin loop, formed between the junction sites, facilitates the alternative splicing of its readthrough precursor. This unique chimeric transcript exhibits evolutionary conservation, evolving to be female-specific from non-human primates to humans. Furthermore, our investigation reveals that UBA1-CDK16 is enriched in the myeloid lineage and plays a regulatory role in myeloid differentiation. Notably, female COVID-19 patients who tested negative for this chimeric transcript displayed higher counts of neutrophils, highlighting its potential role in disease pathogenesis. These findings support the notion that chimeric RNAs represent a new repertoire of transcripts that can be regulated independently from the parental genes, and a new class of RNA variance with potential implications in sexual dimorphism and immune responses.


Assuntos
COVID-19
2.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.02.14.528496

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is a major cell entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Induction of ACE2 expression may represent an effective tactic employed by SARS-CoV-2 to facilitate its own propagation. However, the regulatory mechanisms of ACE2 expression after viral infection remain largely unknown. By employing an array of 45 different luciferase reporters, we identify that the transcription factor Sp1 positively and HNF4 negatively regulate the expression of ACE2 at the transcriptional levels in HPAEpiC cells, a human lung epithelial cell line. SARS-CoV-2 infection promotes and inhibits the transcription activity of Sp1 and HNF4, respectively. The PI3K/AKT signaling pathway, which is activated by SARS-CoV-2 infection, is a crucial node for induction of ACE2 expression by increasing Sp1 phosphorylation, an indicator of its activity, and reducing HNF4 nuclear location. Furthermore, we show that colchicine could inhibit the PI3K/AKT signaling pathway, thereby suppressing ACE2 expression. Inhibition of Sp1 by either its inhibitor mithramycin A or colchicine reduces viral replication and tissue injury in Syrian hamsters infected with SARS-CoV-2. In summary, our study uncovers a novel function of Sp1 in regulating ACE2 expression and suggests that Sp1 is a potential target to reduce SARS-CoV-2 infection.


Assuntos
Síndrome Respiratória Aguda Grave , COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA